Quantcast
Channel: Cancer – www.thctotalhealthcare.com
Viewing all 779 articles
Browse latest View live

n-3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer.

$
0
0

ijms-logo “Over the last decades a renewed interest in n-3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n-3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n-3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n-3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care.”

https://www.ncbi.nlm.nih.gov/pubmed/32224850

https://www.mdpi.com/1422-0067/21/7/2279

“Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion.”  https://www.ncbi.nlm.nih.gov/pubmed/31679810

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


Cannabidiolic acid dampens the expression of cyclooxygenase-2 in MDA-MB-231 breast cancer cells: Possible implication of the peroxisome proliferator-activated receptor β/δ abrogation.

$
0
0

The Journal of Toxicological Sciences “A growing body of experimental evidence strongly suggests that cannabidiolic acid (CBDA), a major component of the fiber-type cannabis plant, exerts a variety of biological activities.

We have reported that CBDA can abrogate cyclooxygenase-2 (COX-2) expression and its enzymatic activity. It is established that aberrant expression of COX-2 correlates with the degree of malignancy in breast cancer.

Although the reduction of COX-2 expression by CBDA offers an attractive medicinal application, the molecular mechanisms underlying these effects have not fully been established.

It has been reported that COX-2 expression is positively controlled by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in some cancerous cells, although there is “no” modulatory element for PPARβ/δ on the COX-2 promoter. No previous studies have examined whether an interaction between PPARβ/δ-mediated signaling and COX-2 expression exists in MDA-MB-231 cells.

We confirmed, for the first time, that COX-2 expression is positively modulated by PPARβ/δ-mediated signaling in MDA-MB-231 cells. CBDA inhibits PPARβ/δ-mediated transcriptional activation stimulated by the PPARβ/δ-specific agonist, GW501516. Furthermore, the disappearance of cellular actin stress fibers, a hallmark of PPARβ/δ and COX-2 pathway activation, as evoked by the GW501516, was effectively reversed by CBDA. Activator protein-1 (AP-1)-driven transcriptional activity directly involved in the regulation of COX-2 was abrogated by the PPARβ/δ-specific inverse agonists (GSK0660/ST-247). Thus, it is implicated that there is positive interaction between PPARβ/δ and AP-1 in regulation of COX-2.

These data support the concept that CBDA is a functional down-regulator of COX-2 through the abrogation of PPARβ/δ-related signaling, at least in part, in MDA-MB-231 cells.”

https://www.ncbi.nlm.nih.gov/pubmed/32238697

https://www.jstage.jst.go.jp/article/jts/45/4/45_227/_article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CBD Reverts the Mesenchymal Invasive Phenotype of Breast Cancer Cells Induced by the Inflammatory Cytokine IL-1β.

$
0
0

ijms-logoCannabidiol (CBD) has been used to treat a variety of cancers and inflammatory conditions with controversial results. In previous work, we have shown that breast cancer MCF-7 cells, selected by their response to inflammatory IL-1β cytokine, acquire a malignant phenotype (6D cells) through an epithelial-mesenchymal transition (EMT).

We evaluated CBD as a potential inhibitor of this transition and inducer of reversion to a non-invasive phenotype. It decreased 6D cell viability, downregulating expression of receptor CB1. The CBD blocked migration and progression of the IL-1β-induced signaling pathway IL-1β/IL-1RI/β-catenin, the driver of EMT. 

Cannabidiol reestablished the epithelial organization lost by dispersion of the cells and re-localized E-cadherin and β-catenin at the adherens junctions. It also prevented β-catenin nuclear translocation and decreased over-expression of genes for ∆Np63α, BIRC3, and ID1 proteins, induced by IL-1β for acquisition of malignant features.

Cannabidiol inhibited the protein kinase B (AKT) activation, a crucial effector in the IL-1β/IL-1RI/β-catenin pathway, indicating that at this point there is crosstalk between IL-1β and CBD signaling which results in phenotype reversion.

Our 6D cell system allowed step-by-step analysis of the phenotype transition and better understanding of mechanisms by which CBD blocks and reverts the effects of inflammatory IL-1β in the EMT.”

https://www.ncbi.nlm.nih.gov/pubmed/32244518

https://www.mdpi.com/1422-0067/21/7/2429

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids as anticancer therapeutic agents.

$
0
0

Cell Cycle Journal are Co-Sponsoring #ACCM15 – The Cell Division Lab “The recent announcement of marijuana legalization in Canada spiked many discussions about potential health benefits of Cannabis sativaCannabinoids are active chemical compounds produced by cannabis, and their numerous effects on the human body are primarily exerted through interactions with cannabinoid receptor types 1 (CB1) and 2 (CB2). Cannabinoids are broadly classified as endo-, phyto-, and synthetic cannabinoids. In this review, we will describe the activity of cannabinoids on the cellular level, comprehensively summarize the activity of all groups of cannabinoids on various cancers and propose several potential mechanisms of action of cannabinoids on cancer cells.”

https://www.ncbi.nlm.nih.gov/pubmed/32249682

“Endocannabinoids and phytocannabinoids can be used for cancer therapy. Cannabis extracts have stronger anti-tumor capacity than single cannabinoids. Combination of several cannabinoids may have more potent effect on cancer.”

https://www.tandfonline.com/doi/abs/10.1080/15384101.2020.1742952?journalCode=kccy20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effects of cannabinoids in exemestane-resistant breast cancer cells: PS181.

$
0
0

“Exemestane is one of the aromatase inhibitors (AI) used as first line treatment for estrogen-receptor positive breast cancer in post-menopausal women. Exemestane acts by inhibiting aromatase, the enzyme responsible for the conversion of androgens to estrogens and also by promoting apoptosis of breast cancer cells. Nevertheless, despite its therapeutic success, this AI, after prolonged treatment, can induce acquired resistance, which causes tumor relapse. Therefore, it is important to find new strategies to overcome resistance in order to improve breast cancer treatment.

Considering that the development of resistance is the main reason for endocrine treatment failure, our group decided to explore the ability of three cannabinoids, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and anandamide (AEA), to reverse resistance to exemestane. The THC and CBD are phytocannabinoids derived from the plant Cannabis sativa (marijuana) whereas AEA is an endocannabinoid. For that, it was used LTEDaro cells, a long-term estrogen deprived ER+ breast cancer cell line that mimics resistance to exemestane. These cells were treated with exemestane in combination with two phytocannabinoids, CBD and THC, and the endocannabinoid AEA.

The presence of CB1 and CB2 in LTEDaro cells was confirmed by Western blot analysis and the effects of the combination of cannabinoids with exemestane were evaluated by MTT and LDH assays. Cell morphology was analyzed by Giemsa and Hoechst staining.

Results: Our results demonstrate that all the cannabinoids induce a decrease in viability of exemestane-resistant cells, in a dose- and time-dependent manner, without LDH release. These results indicate that the studied cannabinoids, mainly THC and AEA, revert the resistance to exemestane, probably by inducing apoptosis, as observed in Giemsa/Hoechst stain by the presence of typical morphological features of apoptosis.

Conclusion: This study highlights the efficacy of using cannabinoids as a potential adjuvant treatment to revert resistance to AIs.”

https://www.ncbi.nlm.nih.gov/pubmed/32258721

https://journals.lww.com/pbj/fulltext/2017/09000/The_effects_of_cannabinoids_in.118.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo.

$
0
0

 Peer-reviewed Oncology & Cancer Research Journal | Oncotarget“Cannabis sativa produces hundreds of phytocannabinoids and terpenes.

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood.

This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells.

This mixture induced cell cycle arrest and cell apoptosis. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5.

We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32284791

“Cannabis sativa has been used by humanity for thousands of years. Various phytocannabinoids exhibit antitumor effects in a wide array of cell lines and animal models. We have shown that a certain synergistic mixture of phytocannabinoids derived from C. sativa extracts have significant cytotoxic activity against My-La and HuT-78 cell lines and against SPBL.

To conclude, active cannabis extract fractions and their synergistic combinations were cytotoxic to CTCL cell lines in in-vitro and to SPBL in ex-vivo studies. The defined S4+S5 formulation of synergistic phytocannabinoids induced cell cycle arrest and cell apoptosis, and affected multiple biological pathways, including those associated with cancer. Based on this pre-clinical study new cannabis-based products that are based on precise composition of synergistically interacting compounds may be developed.”

https://www.oncotarget.com/article/27528/text/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol.

$
0
0

“Colorectal cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiation- and immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate, alternative combination therapies.

Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death.

Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which is found to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibits tumour metastasis and secondary spread.

This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and so enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/32294046

http://www.eurekaselect.com/180902/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Novel approaches and current challenges with targeting the endocannabinoid system.

$
0
0

 Publication Cover“The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome.

Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others.

Expert opinion: Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32336154

“Multi-target approaches could be promising strategies for the treatment of endocannabinoid system-related disorders. The authors believe that phytocannabinoids are at the forefront of future clinical research.”

https://www.tandfonline.com/doi/abs/10.1080/17460441.2020.1752178?journalCode=iedc20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer.

$
0
0

cancers-logo“Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion.

Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively.

An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking.

In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis.

Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32340151

https://www.mdpi.com/2072-6694/12/4/1033

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and cannabinoids in cancer pain management.

$
0
0

 Current Opinion in Supportive and Palliative Care | Apps | 148Apps“An increasing number of patients are turning to cannabis and cannabinoids for management of their palliative and nonpalliative cancer pain and other cancer-related symptoms.

Canadians have a legal framework for access to medical cannabis, which provides a unique perspective in a setting lacking robust clinical evidence. This review seeks to delineate the role of cannabis and cannabinoids in cancer pain management and offers insight into the Canadian practice.

RECENT FINDINGS:

A cohort study using nabiximols on advanced cancer pain in patients already optimized on opioids, over 3 weeks, demonstrated improved average pain score. A large observational study of cancer patients using cannabis over 6 months demonstrated a decreased number of patients with severe pain and decreased opioid use, whereas the number of patients reporting good quality of life increased.

SUMMARY:

Good preclinical animal data and a large body of observational evidence point to the potential efficacy of cannabinoids for cancer pain management. However, there are relatively weak data pointing to clinical efficacy from clinical trial data to date. In Canada, the burgeoning cannabis industry has driven the population to embrace a medicine before clinical evidence. There remains a need for high-quality randomized controlled trials to properly assess the effectiveness and safety of medical cannabis, compared with placebo and standard treatments for cancer-related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/32332209

https://journals.lww.com/pages/results.aspx?txtKeywords=10.1097%2fSPC.0000000000000493

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential therapeutic treatments of cancer-induced bone pain.

$
0
0

Current Opinion in Supportive and Palliative Care “The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects.

Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review.

RECENT FINDINGS:

Cysteine/glutamate antiporter system, xc, cannabinoids, kappa opioids, and a ceramide axis have all been shown to have potential as novel therapeutic targets without the negative effects of opioids.

SUMMARY:

Review of the most recent and promising studies involving CIBP, specifically within murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in late stages, however the standard of care is not effective to treat CIBP. The complicated and chronic nature of this type of pain response renders over the counter analgesics and opioids largely ineffective as well as difficult to use due to unwanted side effects. Preclinical studies have been standardized and replicated while novel treatments have been explored utilizing various alternative receptor pathways: cysteine/glutamate antiporter system, xc, cannabinoid type 1 receptor, kappa opioids, and a ceramide axis sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1.”

https://www.ncbi.nlm.nih.gov/pubmed/32349095

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment.

$
0
0

pharmaceutics-logo“The intraperitoneal administration of chemotherapeutics has emerged as a potential route in ovarian cancer treatment. Nanoparticles as carriers for these agents could be interesting by increasing the retention of chemotherapeutics within the peritoneal cavity. Moreover, nanoparticles could be internalised by cancer cells and let the drug release near the biological target, which could increase the anticancer efficacy.

Cannabidiol (CBD), the main nonpsychotropic cannabinoid, appears as a potential anticancer drug. The aim of this work was to develop polymer nanoparticles as CBD carriers capable of being internalised by ovarian cancer cells.

The drug-loaded nanoparticles (CBD-NPs) exhibited a spherical shape, a particle size around 240 nm and a negative zeta potential (-16.6 ± 1.2 mV). The encapsulation efficiency was high, with values above 95%. A controlled CBD release for 96 h was achieved. Nanoparticle internalisation in SKOV-3 epithelial ovarian cancer cells mainly occurred between 2 and 4 h of incubation. CBD antiproliferative activity in ovarian cancer cells was preserved after encapsulation. In fact, CBD-NPs showed a lower IC50 values than CBD in solution. Both CBD in solution and CBD-NPs induced the expression of PARP, indicating the onset of apoptosis. In SKOV-3-derived tumours formed in the chick embryo model, a slightly higher-although not statistically significant-tumour growth inhibition was observed with CBD-NPs compared to CBD in solution.

To sum up, poly-lactic-co-glycolic acid (PLGA) nanoparticles could be a good strategy to deliver CBD intraperitoneally for ovarian cancer treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/32397428

https://www.mdpi.com/1999-4923/12/5/439

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy.

$
0
0

International Journal of Medical Sciences“The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival.

Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.”

https://www.ncbi.nlm.nih.gov/pubmed/32410828

“Id1 is a promising target of anti-tumor treatment as many compounds exert anti-tumor properties by mediating Id1-related pathways.”

https://www.medsci.org/v17p0995.htm

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness. Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types of solid tumors investigated.”

https://mct.aacrjournals.org/content/6/11/2921

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CP55940 Selectively Induces Apoptosis in Jurkat Cells and in Ex Vivo T-cell Acute Lymphoblastic Leukemia Through H 2 O 2 Signaling Mechanism

$
0
0

 Leukemia Research‘T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous malignant hematological disorder arising from T-cell progenitors.

This study was aimed to evaluate the cytotoxic effect of CP55940 on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat).

In conclusion, CP55940 selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway.

Our findings support the use of cannabinoids as a potential treatment for T-ALL cells.”

https://pubmed.ncbi.nlm.nih.gov/32540572/

https://www.sciencedirect.com/science/article/abs/pii/S0145212620300941?via%3Dihub

“CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC (one of the psychoactive compounds found in cannabis)”  https://en.wikipedia.org/wiki/CP_55,940

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis, the Endocannabinoid System and Immunity-the Journey From the Bedside to the Bench and Back

$
0
0

ijms-logo“The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system.

While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited.

A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage.

Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders.

In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.”

https://pubmed.ncbi.nlm.nih.gov/32585801/

https://www.mdpi.com/1422-0067/21/12/4448

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


The Expression Level of Cannabinoid Receptors Type 1 and 2 in the Different Types of Astrocytomas

$
0
0

 SpringerLink“Astrocytomas, the most prevalent primary brain tumors, can be divided by histology and malignancy levels into four following types: pilocytic astrocytoma (grade I), diffuse fibrillary astrocytoma (grade II), anaplastic astrocytoma (grade III), and glioblastoma multiforme (grade IV). For high grade astrocytomas (grade III and grade IV), blood vessels formation is considered as the most important property.

The distribution of cannabinoid receptors type 1 (CB1) and cannabinoid receptor type 2 (CB2) in blood vessels and tumor tissue of astrocytoma is still controversial. Asrocytoma tissues were collected from 45 patients under the condition of tumor-related neurosurgical operation. The expression of CB1 and CB2 receptors was assessed using immunofluorescence, quantitative real-time RT-PCR and western blotting.

The results indicated an increased expression of CB1 receptors in tumor tissue. There was a significant difference in the mount of CB2 receptors in blood vessels. More was observed in the grade III and glioblastoma (grade IV) than astrocytoma of grade II and control.

This study suggested that, the expression increase of cannabinoid receptors is an index for astrocytoma malignancy and can be targeted as a therapeutic approach for the inhibition of astrocytoma growth among patients.”

https://pubmed.ncbi.nlm.nih.gov/32623617/

https://link.springer.com/article/10.1007%2Fs11033-020-05636-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticancer Effect of New Cannabinoids Derived From Tetrahydrocannabinolic Acid on PANC-1 and AsPC-1 Human Pancreas Tumor Cells

$
0
0

View details for Journal of Pancreatic Cancer cover image

“New tetrahydrocannabinolic acid (THCA) derivatives ALAM027 and ALAM108 were proposed for the treatment of the pancreatic cancer disease.

Methods: The in vitro effect of new cannabinoids ALAM027 and ALAM108 was tested against PANC-1 and AsPC-1 cell lines by CellTiter Glo assay. Pancreatic cancer xenograft model was used for the in vivo anticancer activity study of these compounds on PANC-1 cells.

Results: The in vitro study of new cannabinoids showed greater activity of ALAM108 than ALAM027 both for PANC-1 and AsPC-1 cells. The in vivo study of new cannabinoids on PANC-1 cells showed that their oral administration was effective in reducing tumor volume and tumor weight, and did not lead to any discomfort and weight loss of mice.

Conclusion: The cannabinoids ALAM108 and ALAM027 inhibited the tumor growing 1.6-2 times in mice with human PANC-1 cells.”

https://pubmed.ncbi.nlm.nih.gov/32642629/

“The in vitro study of new cannabinoids showed greater activity of ALAM108 than of ALAM027 both for PANC-1 and AsPC-1 pancreas tumor cells. The in vivo study of these cannabinoids on PANC-1 cells showed that their oral administration decreased the tumor size 1.6–2 times and did not lead to any discomfort, psychotic effects, and weight loss of mice. Further study of these compounds will allow to determine the mechanism of their action on cancer cells and may open the way to new therapeutic drugs based on THCA.”

https://www.liebertpub.com/doi/10.1089/pancan.2020.0003

FIG. 1.

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles

$
0
0

 European Journal of Pharmaceutics and Biopharmaceutics“In this work, we evaluated, for the first time, the antitumor effect of cannabidiol (CBD) as monotherapy and in combination with conventional chemotherapeutics in ovarian cancer and developed PLGA-microparticles as CBD carriers to optimize its anticancer activity.

Spherical microparticles, with a mean particle size around 25 µm and high entrapment efficiency were obtained. Microparticles elaborated with a CBD:polymer ratio of 10:100 were selected due to the most suitable release profile with a zero-order CBD release (14.13±0.17 μg/day/10 mg Mps) for 40 days.

The single administration of this formulation showed an in vitro extended antitumor activity for at least 10 days and an in ovo antitumor efficacy comparable to that of CBD in solution after daily topical administration (≈1.5-fold reduction in tumor growth vs control). The use of CBD in combination with paclitaxel (PTX) was really effective.

The best treatment schedule was the pre+co-administration of CBD (10µM) with PTX. Using this protocol, the single administration of microparticles was even more effective than the daily administration of CBD in solution, achieving a ≈10- and 8- fold reduction in PTX IC50 respectively. This protocol was also effective in ovo. While PTX conducted to a 1.5-fold tumor growth inhibition, its combination with both CBD in solution (daily administered) and 10-Mps (single administration) showed a 2-fold decrease.

These results show the promising potential of CBD-Mps administered in combination with PTX for ovarian cancer treatment, since it would allow to reduce the administered dose of this antineoplastic drug maintaining the same efficacy and, as a consequence, reducing PTX adverse effects.”

https://pubmed.ncbi.nlm.nih.gov/32682943/

https://www.sciencedirect.com/science/article/abs/pii/S0939641120302113?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis

$
0
0

cancers-logo“In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.”

https://pubmed.ncbi.nlm.nih.gov/32708138/

https://www.mdpi.com/2072-6694/12/7/1985

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cytotoxic Effects of Cannabinoids on Human HT-29 Colorectal Adenocarcinoma Cells: Different Mechanisms of THC, CBD, and CB83

$
0
0

ijms-logo “In this study, we investigated the effects of exposition to IC50 dose for 24 h of a new synthetic cannabinoid (CB83) and of phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on HT-29 colorectal carcinoma cells. Cell viability and proliferative activity evaluated using the MTT, lactate dehydrogenase (LDH), and CyQUANT assays showed that cell viability was significantly affected when CB83, THC, and CBD were administered to cells.

The results obtained showed that the reduced glutathione/oxidized glutathione ratio was significantly reduced in the cells exposed to CBD and significantly increased in the cells treated with the CB83 when compared to the controls. CBD treatment causes a significant increase in malondialdehyde content. The catalase activity was significantly reduced in HT-29 cells after incubation with CB83, THC, and CBD. The activities of glutathione reductase and glutathione peroxidase were significantly increased in cells exposed to THC and significantly decreased in those treated with CBD. The ascorbic acid content was significantly reduced in cells exposed to CB83, THC, and CBD. The ultrastructural investigation by TEM highlighted a significantly increased percentage of cells apoptotic and necrotic after CB83 exposition. The Annexin V-Propidium Iodide assay showed a significantly increased percentage of cells apoptotic after CB83 exposition and necrotic cells after CBD and THC exposition.

Our results proved that only CBD induced oxidative stress in HT-29 colorectal carcinoma cells via CB receptor-independent mechanisms and that CB83 caused a mainly CB2 receptor-mediated antiproliferative effect comparable to 5-Fuorouracil, which is still the mainstay drug in protocols for colorectal cancer.”

https://pubmed.ncbi.nlm.nih.gov/32752303/

https://www.mdpi.com/1422-0067/21/15/5533

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Viewing all 779 articles
Browse latest View live