Quantcast
Channel: Cancer – www.thctotalhealthcare.com
Viewing all 779 articles
Browse latest View live

Cannabinoids as anticancer drugs: current status of preclinical research

$
0
0

“Drugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ9-tetrahydrocannabinol, such as the non-psychoactive phytocannabinoid cannabidiol and inhibitors of endocannabinoid degradation. This review provides an up-to-date overview of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies.”

https://pubmed.ncbi.nlm.nih.gov/35277658/


Plant-derived cannabinoids as anticancer agents

$
0
0

“Substantial preclinical evidence demonstrates the antiproliferative, cytotoxic, and antimetastatic properties of plant-derived cannabinoids (phytocannabinoids) such as cannabidiol and tetrahydrocannabinol. The cumulative body of research into the intracellular mechanisms and phenotypic effects of these compounds supports a logical, judicious progression to large-scale phase II/III clinical trials in certain cancer types to truly assess the efficacy of phytocannabinoids as anticancer agents.”

https://pubmed.ncbi.nlm.nih.gov/35260379/

Cannabidiol inhibits RAD51 and sensitizes glioblastoma to temozolomide in multiple orthotopic tumor models

$
0
0

“Background: Cannabidiol (CBD), a nonpsychoactive cannabinoid with a low toxicity profile, has been shown to produce antitumor activity across cancers in part through selective production of reactive oxygen species (ROS) in tumor cells. The alkylating agent, temozolomide (TMZ), is standard of care for treatment of glioblastoma (GBM). It can trigger increased ROS to induce DNA damage. It has also been reported that downregulating the expression of RAD51, an important DNA damage repair protein, leads to sensitization of GBM to TMZ.

Methods: We determined the extent to which CBD enhanced the antitumor activity of TMZ in multiple orthotopic models of GBM. In addition, we investigated the potential for CBD to enhance the antitumor activity of TMZ through production of ROS and modulation of DNA repair pathways.

Results: CBD enhanced the activity of TMZ in U87 MG and U251 GBM cell lines and in patient-derived primary GBM163 cells leading to stimulation of ROS, activation of the ROS sensor AMP-activated protein kinase (AMPK), and upregulation of the autophagy marker LC3A. CBD produced a sensitization of U87 and GBM163-derived intracranial (i.c.) tumors to TMZ and significantly increased survival of tumor-bearing mice. However, these effects were not observed in orthotopic models derived from GBM with intact methylguanine methyltransferase (MGMT) expression. We further demonstrate that CBD inhibited RAD51 expression in MGMT-methylated models of GBM, providing a potential mechanism for tumor sensitization to TMZ by CBD.

Conclusion: These data support the potential therapeutic benefits of using CBD to enhance the antitumor activity of TMZ in GBM patients.”

https://pubmed.ncbi.nlm.nih.gov/35356807/

A Low Dose of Pure Cannabidiol Is Sufficient to Stimulate the Cytotoxic Function of CIK Cells without Exerting the Downstream Mediators in Pancreatic Cancer Cells

$
0
0

“Despite numerous studies conducted over the past decade, the exact role of the cannabinoid system in cancer development remains unclear. Though research has focused on two cannabinoid receptors (CB1, CB2) activated by most cannabinoids, CB2 holds greater attention due to its expression in cells of the immune system. In particular, cytokine-induced killer cells (CIKs), which are pivotal cytotoxic immunological effector cells, express a high-level of CB2 receptors. Herein, we sought to investigate whether inducing CIK cells with cannabidiol can enhance their cytotoxicity and if there are any possible counter effects in its downstream cascade of phosphorylated p38 and CREB using a pancreatic ductal adenocarcinoma cell line (PANC-1). Our results showed that IL-2 modulates primarily the expression of the CB2 receptor on CIK cells used during ex vivo CIK expansion. The autophagosomal-associated scaffold protein p62 was found to co-localize with CB2 receptors in CIK cells and the PANC-1 cell line. CIK cells showed a low level of intracellular phospho-p38 and, when stimulated with cannabidiol (CBD), a donor specific variability in phospho-CREB. CBD significantly decreases the viability of PANC-1 cells presumably by increasing the cytotoxicity of CIK cells. Taken together, in our preclinical in vitro study, we propose that a low effective dose of CBD is sufficient to stimulate the cytotoxic function of CIK without exerting any associated mediator. Thus, the combinatorial approach of non-psychoactive CBD and CIK cells appears to be safe and can be considered for a clinical perspective in pancreatic cancer.”

https://pubmed.ncbi.nlm.nih.gov/35409142/

Impact of Cannabinoid Compounds on Skin Cancer

$
0
0

“Drugs targeting the endocannabinoid system are of interest as potential systemic chemotherapeutic treatments and for palliative care in cancer. In this context, cannabinoid compounds have been successfully tested as a systemic therapeutic option in preclinical models over the past decades. Recent findings have suggested an essential function of the endocannabinoid system in the homeostasis of various skin functions and indicated that cannabinoids could also be considered for the treatment and prophylaxis of tumour diseases of the skin. Cannabinoids have been shown to exert their anticarcinogenic effects at different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy. This review provides an insight into the current literature on cannabinoid compounds as potential pharmaceuticals for the treatment of melanoma and squamous cell carcinoma.”

https://pubmed.ncbi.nlm.nih.gov/35406541/

A Nrf-2 Stimulatory Hydroxylated Cannabidiol Derivative from Hemp ( Cannabis sativa)

$
0
0

“A phytochemical analysis of mother liquors obtained from crystallization of CBD from hemp (Cannabis sativa), guided by LC-MS/MS and molecular networking profiling and completed by isolation and NMR-based characterization of constituents, resulted in the identification of 13 phytocannabinoids. Among them, anhydrocannabimovone (5), isolated for the first time as a natural product, and three new hydroxylated CBD analogues (1,2-dihydroxycannabidiol, 6, 3,4-dehydro-1,2-dihydroxycannabidiol, 7, and hexocannabitriol, 8) were obtained. Hexocannabitriol (8) potently modulated, in a ROS-independent way, the Nrf2 pathway, outperforming all other cannabinoids obtained in this study and qualifying as a potential new chemopreventive chemotype against cancer and other degenerative diseases.”

https://pubmed.ncbi.nlm.nih.gov/35316044/

Cannabidiol Μay Prolong Survival in Patients With Glioblastoma Multiforme

$
0
0

“Background: Glioblastoma multiforme (GBM) is a relatively rare type of brain tumour with an incidence rate around 6 per 100,000. Even with the widely practiced combination of radiotherapy with adjuvant temozolomide, the median overall survival remains low with just 13.5 to 16 months after diagnosis.

Patients and methods: We retrospectively reviewed the survival of a cohort of 15 consecutive, unselected patients with histopathologically confirmed glioblastoma multiforme (GBM) who received CBD (400 to 600 mg orally per day) in addition to standard therapy (maximum resection of the tumour followed by radio-chemotherapy).

Results: Of 15 patients, seven (46.7%) are now living for at least 24 months, and four (26.7%) for at least 36 months. This is more than twice as long as has been previously reported in the literature. The mean overall survival is currently 24.2 months (median 21 months).

Conclusion: CBD is a well supported co-medication and seems to prolong the survival of patients with glioblastoma multiforme.”

https://pubmed.ncbi.nlm.nih.gov/35403130/

“In conclusion, concomitant CBD seems to prolong the survival of patients with glioblastoma multiforme; CBD was well supported and did not cause side effects.”

The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies

$
0
0

“Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.”

https://pubmed.ncbi.nlm.nih.gov/34830856/


Anti-cancer potential of cannabis terpenes in a taxol-resistant model of breast cancer

$
0
0

“Chemotherapeutic resistance can limit breast cancer outcomes; therefore, the exploration of novel therapeutic options is warranted. Isolated compounds found in cannabis have previously been shown to exhibit anti-cancer effects, but little is known about their effects in resistant breast cancer. Our study aims to evaluate the effects of terpenes found in cannabis in in vitro chemotherapy-resistant model of breast cancer. We aimed to identify whether five terpenes found in cannabis produced anti-cancer effects, and if their effects were improved upon co-treatment with cannabinoids and flavonoids also found in cannabis. Nerolidol and β-caryophyllene produced the greatest cytotoxic effects, activated the apoptotic cascade and reduced cellular invasion. Combinations with the flavonoid kaempferol potentiated the cytotoxic effects of ocimene, terpinolene, and β-myrcene. Combinations of nerolidol and Δ9-tetrahydrocannabinol or cannabidiol produced variable responses ranging from antagonism and additivity to synergy, depending on concentrations used. Our results indicate that cannabis terpenes, alone or combined with cannabinoids and flavonoids, produced anti-cancer effects in chemotherapy-resistant breast cancer cell lines. This study is a first step in the identification of compounds that could have therapeutic potential in the treatment of resistant breast cancer.”

https://www.biorxiv.org/content/10.1101/2021.10.08.463667v1.full

Cannabis Biomolecule Effects on Cancer Cells and Cancer Stem Cells: Cytotoxic, Anti-Proliferative, and Anti-Migratory Activities

$
0
0

“Cancer is a complex family of diseases affecting millions of people worldwide. Gliomas are primary brain tumors that account for ~80% of all malignant brain tumors. Glioblastoma multiforme (GBM) is the most common, invasive, and lethal subtype of glioma. Therapy resistance and intra-GBM tumoral heterogeneity are promoted by subpopulations of glioma stem cells (GSCs). Cannabis sativa produces hundreds of secondary metabolites, such as flavonoids, terpenes, and phytocannabinoids. Around 160 phytocannabinoids have been identified in C. sativa. Cannabis is commonly used to treat various medical conditions, and it is used in the palliative care of cancer patients. The anti-cancer properties of cannabis compounds include cytotoxic, anti-proliferative, and anti-migratory activities on cancer cells and cancer stem cells. The endocannabinoids system is widely distributed in the body, and its dysregulation is associated with different diseases, including various types of cancer. Anti-cancer activities of phytocannabinoids are mediated in glioma cells, at least partially, by the endocannabinoid receptors, triggering various cellular signaling pathways, including the endoplasmic reticulum (ER) stress pathway. Specific combinations of multiple phytocannabinoids act synergistically against cancer cells and may trigger different anti-cancer signaling pathways. “

https://pubmed.ncbi.nlm.nih.gov/35454080/

Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes

$
0
0

“Phytocannabinoids possess anticancer properties, as established in vitro and in vivo. However, they are characterized by high lipophilicity. To improve the properties of cannabidiol (CBD), such as solubility, stability, and bioavailability, CBD inclusion complexes with cyclodextrins (CDs) might be employed, offering targeted, faster, and prolonged CBD release. The aim of the present study is to investigate the in vitro effects of CBD and its inclusion complexes in randomly methylated β-CD (RM-β-CD) and 2-hyroxypropyl-β-CD (HP-β-CD). The enhanced solubility of CBD upon complexation with CDs was examined by phase solubility study, and the structure of the inclusion complexes of CBD in 2,6-di-O-methyl-β-CD (DM-β-CD) and 2,3,6-tri-O-methyl-β-CD (TM-β-CD) was determined by X-ray crystallography. The structural investigation was complemented by molecular dynamics simulations. The cytotoxicity of CBD and its complexes with RM-β-CD and HP-β-CD was tested on two cell lines, the A172 glioblastoma and TE671 rhabdomyosarcoma cell lines. Methylated β-CDs exhibited the best inclusion ability for CBD. A dose-dependent effect of CBD on both cancer cell lines and improved efficacy of the CBD-CDs complexes were verified. Thus, cannabinoids may be considered in future clinical trials beyond their palliative use as possible inhibitors of cancer growth.”

https://pubmed.ncbi.nlm.nih.gov/35456540/

Lower Rates of Hepatocellular Carcinoma Observed Among Cannabis Users: A Population-Based Study

$
0
0

“Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the fourth leading cause of cancer deaths in the world. The association between HCC and cannabis has been identified in mice; however, to our knowledge has not been identified in humans. Therefore, we aim to investigate the relation between HCC and cannabis use in humans.

Methods: Using data from the National Inpatient Sample (NIS) database between 2002 and 2014, we identified the patients with HCC and cannabis use diagnosis using the International Classification of Disease 9th version codes (ICD-9). Then, we identified patients without cannabis use as the control group. We adjusted for multiple potential confounders and performed multivariable logistic regression analysis to determine the association between cannabis abuse and HCC.

Results: A total of 101,231,036 patients were included in the study. Out of the total, 996,290 patients (1%) had the diagnosis of cannabis abuse versus 100,234,746 patients (99%) in the control group without cannabis abuse. We noticed that patients with cannabis abuse were younger (34 vs 48 years), had more males (61.7% vs 41.4%) and more African Americans (29.9% vs 14.2%) compared with the control group (P<0.001 for all). Besides, patients with cannabis use had more hepatitis B, hepatitis C, liver cirrhosis, and smoking, but had less obesity and gallstones, (P<0.001 for all). Using multivariable logistic regression, and after adjusting for potential confounders, patients with cannabis abuse were 55% less likely to have HCC (adjusted Odds Ratio {aOR}, 0.45, 95% Confidence Interval {CI}, 0.42-0.49, P<0.001) compared with patients without cannabis abuse.

Conclusion: Based on our large database analysis, we found that cannabis use patients were 55% less likely to have HCC compared to patients without cannabis use. Further prospective studies are needed to assess the role of cannabis use on HCC.”

“Our analysis revealed that cannabis users were 55% less likely to have HCC compared to non-cannabis users.”

https://www.cureus.com/articles/90568-lower-rates-of-hepatocellular-carcinoma-observed-among-cannabis-users-a-population-based-study

Cannabinol inhibits proliferation and induces cell cycle arrest and apoptosis in glioblastoma, hepatocellular carcinoma and breast cancer cells

$
0
0

“Cannabis sativa is an agriculturally and medicinally important plant with many pharmaceutical properties. Cancer is a deadly disease; it is estimated that it will cause over 80 thousand deaths in 2019 in Canada. Although numerous studies have demonstrated that cannabinoids have anti-tumorous properties in various cancers, the anti-malignant activities of cannabinol (CBN) on carcinogenesis and underlying mechanisms remain largely unknown. In this study, we provide evidence that CBN inhibits proliferation of A172, HB8065 and HCC1806 cells in a dose- and time-dependent manner. CBN regulates expression of cannabinoid receptors, CB2, GPR55 and GPR18 in different cell lines, while reducing levels of phosphorylated ERK1/2 in HCC1806 and phosphorylated AKT in A172 and HB8065 cells. We find that CBN induces apoptosis through downregulation of p21 and p27 and a G1 or S-phase cell cycle arrest through a dose-dependent downregulation of cyclin E1, CDK1 and CDK2. These data support the medicinal potential of CBN in anti-cancer therapy.”

https://opus.uleth.ca/handle/10133/5697

Cannabinol Inhibits Cellular Proliferation, Invasion, and Angiogenesis of Neuroblastoma via Novel miR-34a/tRiMetF31/PFKFB3 Axis

$
0
0
cancers-logo


“High-risk neuroblastoma is an aggressive pediatric tumor. Despite great advances in neuroblastoma therapy and supportive care protocols, no curative treatment is available for most patients with this disease. Here, we uncover that CBN attenuated the cell proliferation, invasion, and angiogenesis of neuroblastoma cell lines in a dose-dependent manner via the inhibition of the AKT pathway and the upregulation of miR-34a that targets E2F1. Both miR-34a and a 31-nt tRNAiMet fragment (tRiMetF31) derived from miR-34a-guided cleavage were downregulated in 4 examined neuroblastoma cell lines inversely correlated with the levels of its direct target, the PFKFB3 protein. Moreover, ectopic tRiMetF31 suppressed proliferation, migration, and angiogenesis in the studied neuroblastoma cell lines. Conversely, tRiMetF31 knockdown promoted PFKFB3 expression, resulting in enhanced angiogenesis. Our findings reveal a suppressive role of CBN in neuroblastoma tumorigenesis, highlighting a novel and crucial miR-34a tumor suppressor network in CBN’s antineuroblastoma actions.”

https://pubmed.ncbi.nlm.nih.gov/35454815/

“Cannabinol is a chemical found in the Cannabis sativa plant.”

https://www.webmd.com/vitamins/ai/ingredientmono-1611/cannabinol-cbn

Activation of cannabinoid receptors in breast cancer cells improves osteoblast viability in cancer-bone interaction model while reducing breast cancer cell survival and migration

$
0
0
Scientific Reports

“The endocannabinoid system has been postulated to help restrict cancer progression and maintain osteoblastic function during bone metastasis. Herein, the effects of cannabinoid receptor (CB) type 1 and 2 activation on breast cancer cell and osteoblast interaction were investigated by using ACEA and GW405833 as CB1 and CB2 agonists, respectively. Our results showed that breast cancer cell (MDA-MB-231)-derived conditioned media markedly decreased osteoblast-like UMR-106 cell viability. In contrast, media from MDA-MB-231 cells pre-treated with GW405833 improved UMR-106 cell viability. MDA-MB-231 cells were apparently more susceptible to both CB agonists than UMR-106 cells. Thereafter, we sought to answer the question as to how CB agonists reduced MDA-MB-231 cell virulence. Present data showed that co-activation of CB1 and CB2 exerted cytotoxic effects on MDA-MB-231 cells by increasing apoptotic cell death through suppression of the NF-κB signaling pathway in an ROS-independent mechanism. ACEA or GW405833 alone or in combination also inhibited MDA-MB-231 cell migration. Thus, it can be concluded that the endocannabinoid system is able to provide protection during breast cancer bone metastasis by interfering cancer and bone cell interaction as well as by the direct suppression of cancer cell growth and migration.”

https://pubmed.ncbi.nlm.nih.gov/35513484/

“In conclusions, we have demonstrated that the ECS—which was present in bone microenvironment—provided a protection against breast cancer bone metastasis and its negative consequence on bone cell survival. Specifically, CB agonists, especially CB2 agonist, was able to prevent breast cancer-induced osteoblast suppression. Each of the two CB agonists or a combination of both could reduce breast cancer cell survival and migration through the NF-κB-dependent pathway. “

https://www.nature.com/articles/s41598-022-11116-9



Cutaneous Squamous Cell Carcinoma and Lichen Simplex Chronicus Successfully Treated with Topical Cannabinoid Oil: A Case Report and Summary of Cannabinoids in Dermatology

$
0
0

“Cannabidiol is a member of the cannabinoids, consisting of a diverse class of compounds derived from Cannabis sativa. There are three types of cannabinoids based on origin: endocannabinoids (endogenous), phytocannabinoids (plant-derived), and synthetic cannabinoids (synthesized). The endocannabinoid system plays a key role in skin homeostasis, such as proliferation, differentiation, and inflammatory signaling. A 64-year-old woman with a history of multiple squamous cell carcinomas who presented with skin lesions on her bilateral dorsal hands is reported. Her skin biopsies showed lichen simplex chronicus on her left hand and squamous cell carcinoma on her right hand; both lesions resolved with topical application of 20% cannabidiol. Cutaneous adverse events associated with cannabinoid use and potential therapeutic uses of cannabinoids in inflammatory skin diseases and skin cancer are also summarized.”

https://pubmed.ncbi.nlm.nih.gov/35530920/

“Cannabinoids are a class of drugs that are found in animals, humans, and plants; they are also synthesized. They are useful in the management of several systemic diseases. Indeed, cannabinoids have also been observed to be potentially effective in the treatment of cosmetic skin conditions and cutaneous diseases. In addition, they may be therapeutic in the management of not only non-melanoma skin cancer, such as squamous cell carcinoma, but also melanoma and Kaposi sarcoma. Our patient had successful treatment of a benign skin condition (lichen simplex chronicus); in addition, she had complete regression of several biopsy-confirmed squamous cell carcinomas. Therefore, the possibility of treating non-melanoma skin cancer, such as squamous cell carcinoma, with topical cannabinoids may warrant further investigation.”

https://www.cureus.com/articles/91630-cutaneous-squamous-cell-carcinoma-and-lichen-simplex-chronicus-successfully-treated-with-topical-cannabinoid-oil-a-case-report-and-summary-of-cannabinoids-in-dermatology


Synthesis of A Tetrahydrocannabinol (THC) Analog For Analyzing Cellular Proliferation in Concert With Epigallocatechin Gallate (EGCG) on A Bone-like Cancer Cell Line (UMR 106-01 BSP)

$
0
0

“Cannabinoids have been extensively studied in the field of cancer research. Tetrahydrocannabinol (THC) has shown promising results in influencing cellular proliferation when in association with other cannabinoids. This traditional entourage effect solely focuses on the study of THC with other cannabinoids. However, not many studies have been done to explore the synergistic effect of THC analogs when used with non-cannabinoid compounds. THC in its isolate form for experimentation is very strictly regulated. Therefore, this study was conducted in the pursuit of synthesizing and experimenting with analogs of THC to observe a potential entourage effect with epigallocatechin gallate (EGCG), a compound known for its efficacy to reduce proliferation at higher concentrations in UMR cells. It was hypothesized that active analogs of THC can be synthesized and used in concert with EGCG to potentiate decreased proliferation in the bone-like cancer cell line UMR 106-01 BSP (UMR cells). Briefly, a Knoevenagel condensation and a Diels-Alder reaction using 1,3-cyclohexanediol dissolved in methanol (MeOH) and citronellal with ethylenediamine diacetic acid (EDDA) at a temperature of 60℃ was used to synthesize a novel THC analog, 3,10,10-Trimethyl-1,2,3,4,4a,6,7,8,10,10a-decahydro-9-oxa-5-phenanthrenone (TDP). UMR cells were routinely passaged, counted, plated in six-well culture plates at 480,00 cells/mL, then treated with 10-fold dilutions of TDP. The plates were incubated for 72 hours in a humidified incubator at 37 degrees Celsius with 5% carbon dioxide infusion. At the end of the experiment, the cells were routinely washed with HANKS buffered saline solution (HBSS), then routinely counted using the Luna Automated Cell Counter. In another experiment, designated cells were co-treated with TDP+EGCG, following the protocol above. F test ANOVA was used to compare variances and all values in the results were expressed as means ± SD. The results from the attempted cannabinoid analog synthesis yielded a novel active THC analog, TDP. Serial dilutions treatment of the UMR cells with TDP alone showed its ability to decrease cell count in a concentration dependent manner. However, when coupled with higher concentrations of EGCG, the co-treatment increased cell count rather than potentiating the effect of decreasing cellular proliferation. The F Test ANOVA showed robust statistical significance (p values <0.05) with regard to TDP’s effect of decreasing cell proliferation in UMR cells in a concentration-dependent manner. Overall, the outcomes of this study suggest that active forms of THC analogs can be synthesized and tested in concert with other non-cannabinoid compounds like EGCG. This study opens the door to explore the entourage effect of TDP with other non-cannabinoid compounds that may provide another tool in the therapeutic treatment of bone cancer cells.”

https://pubmed.ncbi.nlm.nih.gov/35555816/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.L8061

The Role of Nutritional Status, Gastrointestinal Peptides, and Endocannabinoids in the Prognosis and Treatment of Children with Cancer

$
0
0
ijms-logo

“Neoplastic diseases in children are the second most frequent cause of death among the young. It is estimated that 400,000 children worldwide will be diagnosed with cancer each year. The nutritional status at diagnosis is a prognostic indicator and influences the treatment tolerance. Both malnutrition and obesity increase the risk of mortality and complications during treatment. It is necessary to constantly search for new factors that impair the nutritional status.

The endocannabinoid system (ECS) is a signaling system whose best-known function is regulating energy balance and food intake, but it also plays a role in pain control, embryogenesis, neurogenesis, learning, and the regulation of lipid and glucose metabolism. Its action is multidirectional, and its role is being discovered in an increasing number of diseases.

In adults, cannabinoids have been shown to have anti-cancer properties against breast and pancreatic cancer, melanoma, lymphoma, and brain tumors. Data on the importance of both the endocannabinoid system and synthetic cannabinoids are lacking in children with cancer.

This review highlights the role of nutritional status in the oncological treatment process, and describes the role of ECS and gastrointestinal peptides in regulating appetite. We also point to the need for research to evaluate the role of the endocannabinoid system in children with cancer, together with a prospective assessment of nutritional status during oncological treatment.”

https://pubmed.ncbi.nlm.nih.gov/35563548/

https://www.mdpi.com/1422-0067/23/9/5159


Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells

$
0
0
molecules-logo

“1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent β-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 μM and FG160a = 13.2 μM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.”

https://pubmed.ncbi.nlm.nih.gov/35566369/

https://www.mdpi.com/1420-3049/27/9/3019


The Role of Cannabidiol (CBD) in a Cisplatin-Induced Model of Chronic Neuropathic Pain

$
0
0

“Cannabinoid-based therapies offer a safer, non-opioid alternative for the management of chronic pain. While most studies focus on the analgesic potential of the main psychoactive component of marijuana, Δ9-tetrahydrocannabinol, fewer studies have investigated the role of the non-psychoactive component, cannabidiol (CBD). CBD has been purported to have analgesic, anti-inflammatory, anticonvulsant, and anxiolytic effects. In addition to having actions at both cannabinoid receptors (CB1 and CB2 ), CBD has been shown to interact with both the transient receptor potential vanilloid-1 (TRPV1) and serotonergic (5-HT) receptors. Clinically, CBD’s lack of psychoactivity and decreased abuse liability make it an appealing pharmacotherapeutic for the management of chronic pain. Therefore, the purpose of the current study was to determine whether CBD sex- or dose-dependently reverses antinociception in an acute model of thermal pain and/or mechanical allodynia in a model of cisplatin-induced chronic neuropathic pain. Furthermore, we observed the degree to which CB1 , CB2 , 5-HT, and TRPV1 receptors may be mediating these anti-allodynic responses. Male and female wild-type mice were assessed for either the anti-allodynic effects of 0, 1, 3, 10, and 30 mg/kg CBD in a cisplatin-induced model of neuropathic pain or the antinociceptive effects of 0, 1, 3, 10, 30, and 100 mg/kg CBD in a model of acute thermal (tail-flick) pain 60 minutes following CBD administration. To determine the relative contributions of each receptor subtype in mediating the anti-allodynic effects of CBD, male and female mice were pretreated with either: vehicle, the CB1 inverse agonist SR141716A (10 mg/kg), the CB2 antagonist SR144528 (10 mg/kg), the TRPV1 antagonist capsazepine (10 mg/kg), or the 5-HT2 antagonist methysergide (4 mg/kg) 30 minutes prior to treatment with CBD. Mice were assessed for the effects of the pretreatment alone and in combination with CBD. CBD at a dose of 3 mg/kg was able to partially reverse cisplatin-induced allodynia in male and female mice, while doses of 10 and 30 mg/kg resulted in nearly complete reversal. Our preliminary findings showed that the anti-allodynic effects of 30 mg/kg CBD were completely blocked following pretreatment with SR141716A and SR144528, and partially blocked by capsazepine in both male and female mice. Interestingly, pretreatment with methysergide partially attenuated the anti-allodynic effects of CBD in females alone. In contrast, CBD (0-100 mg/kg) failed to induce antinociception on the tail-flick assay. CBD did induce mild hypothermia with males showing a greater degree of CBD-mediated hypothermia than female mice. Taken together, these findings suggest that CBD may be a more effective treatment option for the management of chronic pain. This study highlights the therapeutic potential of CBD in a model of neuropathic pain and suggests that these effects may have clinical implications for the use of cannabinoids in chronic pain management.”

https://pubmed.ncbi.nlm.nih.gov/35560789/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.R5197

Viewing all 779 articles
Browse latest View live