Quantcast
Channel: Cancer – www.thctotalhealthcare.com
Viewing all 779 articles
Browse latest View live

Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids

$
0
0

Image result for frontiers in pharmacology

“Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel.

Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC.

Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.

 Anti-tumor action of cannabinoids in CRC was strongly supported by several authors.
The Endocannabinoid (EC) system role in the progression of CRC has been analyzed in vivo in the mouse model of azoxymethane-induced colon carcinogenesis, where cannabinoids-mediated reduction of precancerous lesions in the mouse colon was found.
In CRC cells, agonists and antagonists of both cannabinoid receptors, CB1 and CB2, showed anti-tumor action through induction of cell death with different mechanisms ranging from apoptosis to mitotic catastrophe”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


(±)-Sativamides A and B, Two Pairs of Racemic Nor-lignanamide Enantiomers from the Fruits of Cannabis sativa (Hemp Seed).

$
0
0

The Journal of Organic Chemistry

“(±)-Sativamides A (1) and B (2), two pairs of nor-lignanamide enantiomers featuring a unique benzo-angular triquinane skeleton, were isolated from the fruits of Cannabis sativa (hemp seed). Their structures were elucidated by detailed spectroscopic analysis and ECD calculations. The resolution of (+)- and (-)-sativamides A and B were achieved by chiral HPLC. Pretreatment of neuroblastoma cells with 1 and 2 significantly reduced the endoplasmic reticulum (ER) stress-induced cytotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/29345463

http://pubs.acs.org/doi/10.1021/acs.joc.7b02765

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Cannabis: The Oncology Nurse’s Role in Patient Education About the Effects of Marijuana on Cancer Palliation

$
0
0

Home

“Cannabis, also known as marijuana, is legal either medicinally or recreationally in 29 states and the District of Columbia, with a majority of the U.S. adult population now living in states where cannabis is legal for medicinal use. As an advocate for patient autonomy and informed choice, the oncology nurse has an ethical responsibility to educate patients about and support their use of cannabis for palliation.

OBJECTIVES:

This article aims to discuss the human endocannabinoid system as a basis for better understanding the palliative and curative nature of cannabis as a medicine, as well as review cannabis delivery methods and the emerging role of the oncology nurse in this realm.

FINDINGS:

The oncology nurse can play a pivotal role in supporting patients’ use of cannabis for palliation”

https://www.ncbi.nlm.nih.gov/pubmed/29350699

https://cjon.ons.org/cjon/22/1/medical-cannabis-oncology-nurse-s-role-patient-education-about-effects-marijuana-cancer

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting the endocannabinoid system as a potential anticancer approach.

$
0
0

Publication Cover

“The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer.

Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network.

As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances.

Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.” https://www.ncbi.nlm.nih.gov/pubmed/29390896  http://www.tandfonline.com/doi/abs/10.1080/03602532.2018.1428344?journalCode=idmr20

“Anticancer mechanisms of cannabinoids”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/
“Cannabinoids as Anticancer Drugs.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

$
0
0

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

$
0
0
“In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells.
The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines.
Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 μM concentration.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

$
0
0

Logo of cddis

“Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells.

Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells.

Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death.

Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance.

Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD.

Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD.

The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/24309936

“The non-psychoactive plant cannabinoid, cannabidiol (CBD), alone has strong anti-inflammatory and immunosuppressive effects in diverse animal models of disease such as diabetes, cancer, rheumatoid arthritis and multiple sclerosis. In addition, CBD has been reported to have anxiolytic, antiemetic and antipsychotic effects. Moreover, CBD has been shown to possess antitumor activity in human breast carcinoma and to effectively reduce primary tumor mass, as well as size and number of lung metastasis in preclinical animal models of breast cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877544/

“In summary, in this study we have identified VDAC1 as a new molecular target for CBD. Our study suggests that CBD-induced cell death may occur through the inhibition of VDAC1 conductance and that this interaction may be responsible for the anticancer and immunosuppressive properties of CBD.”

https://www.nature.com/articles/cddis2013471

“Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-CancerTherapeutics.” https://www.ncbi.nlm.nih.gov/pubmed/28824871

“Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.”  https://www.ncbi.nlm.nih.gov/pubmed/25448878

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CBD Enhances the Anticancer Effects of THC

$
0
0
Image result for molecular cancer therapeutics
“Δ9-Tetrahydrocannabinol (Δ9-THC) and other cannabinoids can act as direct anticancer agents in multiple types of cancer in culture and in vivo.
Cannabidiol Enhances the Inhibitory Effects of  Δ9-Tetrahydrocannabinol on Human GlioblastomaCell Proliferation and Survival.
Δ9-THC and Cannabidiol Inhibit the Growth of Multiple Glioblastoma Cell Lines.
Cannabidiol Enhances the Inhibitory Effects of Δ9-THC on Glioblastoma Cell Growth.
Combination treatments with cannabinoids may improve overall efficacy”

“Cannabidiol Enhances the Inhibitory Effects of Δ9-Tetrahydrocannabinol on Human Glioblastoma Cell Proliferation and Survival”   http://mct.aacrjournals.org/content/9/1/180.full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

$
0
0

Journal of Physiology and Biochemistry

“Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells.

Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death.

The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability.

These data indicate that cannabinoids modulate endometrial cancer cell death.

Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma.

Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/29441458

https://link.springer.com/article/10.1007%2Fs13105-018-0611-7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis for vismodegib-related muscle cramps in a patient with advanced basal cell carcinoma

$
0
0

Journal of Pain and Symptom Management Home“Vismodegib is a hedgehog inhibitor drug indicated for metastatic or locally advanced basal cell carcinoma (BCC) that is not fit for surgery or radiation therapy.

One of the most common side effects of vismodegib is muscle cramps which can cause a decrease in quality of life (QoL) and treatment discontinuation. Cannabis is known to improve spasticity (including muscle cramps) in multiple sclerosis patients.”

http://www.jpsmjournal.com/article/S0885-3924(18)30070-8/fulltext

“Medical marijuana for the treatment of vismodegib-related muscle spasm. We report a case of vismodegib-related muscle spasm that was successfully treated with medical marijuana (MM).” http://www.jaadcasereports.org/article/S2352-5126(17)30124-8/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The current state and future perspectives of cannabinoids in cancer biology.

$
0
0

Cancer Medicine

“To date, cannabinoids have been allowed in the palliative medicine due to their analgesic and antiemetic effects, but increasing number of preclinical studies indicates their anticancer properties. Cannabinoids exhibit their action by a modulation of the signaling pathways crucial in the control of cell proliferation and survival. Many in vitro and in vivo experiments have shown that cannabinoids inhibit proliferation of cancer cells, stimulate autophagy and apoptosis, and have also a potential to inhibit angiogenesis and metastasis. In this review, we present an actual state of knowledge regarding molecular mechanisms of cannabinoids’ anticancer action, but we discuss also aspects that are still not fully understood such as the role of the endocannabinoid system in a carcinogenesis, the impact of cannabinoids on the immune system in the context of cancer development, or the cases of a stimulation of cancer cells’ proliferation by cannabinoids. The review includes also a summary of currently ongoing clinical trials evaluating the safety and efficacy of cannabinoids as anticancer agents.”

https://www.ncbi.nlm.nih.gov/pubmed/29473338

http://onlinelibrary.wiley.com/doi/10.1002/cam4.1312/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer

$
0
0

Cover image volume 49, Issue

“Cancer is a major public health problem as the leading cause of death. Palliative treatment aimed to alleviate pain and nausea in patients with advanced disease is a cornerstone of oncology.

In 2007, the Israeli Ministry of Health began providing approvals for medical cannabis for the palliation of cancer symptoms. The aim of this study is to characterize the epidemiology of cancer patients receiving medical cannabis treatment and describe the safety and efficacy of this therapy.

Methods

We analyzed the data routinely collected as part of the treatment program of 2970 cancer patients treated with medical cannabis between 2015 and 2017.

Results

The average age was 59.5 ± 16.3 years, 54.6% women and 26.7% of the patients reported previous experience with cannabis. The most frequent types of cancer were: breast (20.7%), lung (13.6%), pancreatic (8.1%) and colorectal (7.9%) with 51.2% being at stage 4. The main symptoms requiring therapy were: sleep problems (78.4%), pain (77.7%, median intensity 8/10), weakness (72.7%), nausea (64.6%) and lack of appetite (48.9%). After six months of follow up, 902 patients (24.9%) died and 682 (18.8%) stopped the treatment. Of the remaining, 1211 (60.6%) responded; 95.9% reported an improvement in their condition, 45 patients (3.7%) reported no change and four patients (0.3%) reported deterioration in their medical condition.

Conclusions

Cannabis as a palliative treatment for cancer patients seems to be well tolerated, effective and safe option to help patients cope with the malignancy related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/29482741

http://www.ejinme.com/article/S0953-6205(18)30023-2/pdf

“Cannabis to be a “Safe,” “Effective” Medical Treatment in First-of-its-Kind, Peer-Reviewed Study of Thousands of Cancer Patients Using Tikun Olam™ Strains”  http://markets.businessinsider.com/news/stocks/cannabis-to-be-a-safe-effective-medical-treatment-in-first-of-its-kind-peer-reviewed-study-of-thousands-of-cancer-patients-using-tikun-olam-strains-1017297749

“For the first time, a major scientific study has confirmed what cannabis advocates have known for decades: that cannabis can be a safe and effective palliative treatment in patients suffering from the debilitating effects of cancer.”  https://www.prnewswire.com/news-releases/cannabis-to-be-a-safe-effective-medical-treatment-in-first-of-its-kind-peer-reviewed-study-of-thousands-of-cancer-patients-using-tikun-olam-strains-300604361.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pascal Biosciences Identifies Molecules in Cannabis That Stimulate the Immune System to Destroy Tumor Cells

$
0
0

Image result for globenewswire

“Pascal Biosciences Inc. (TSX.V:PAS) (“Pascal” or the “Company”) announced the Company has discovered certain cannabinoids that enhance the immunogenicity of tumor cells, rendering them more susceptible to recognition by the immune system. This discovery is important because the leading class of new cancer fighting agents, termed “checkpoint inhibitors”, activates the immune system to destroy cancer cells. Enhancing recognition of cancer cells with cannabinoids may greatly improve the efficacy of this drug class. Cannabinoids are the chemical compounds which give the cannabis plant its medicinal properties with over 100 different cannabinoids identified. There is a growing body of research demonstrating the effectiveness of cannabinoids in the treatment of cancer symptoms, including nausea, appetite enhancement, and pain management. However, Pascal is the first to identify a mechanism in which cannabinoids may provide a direct benefit in immunotherapy.”

https://globenewswire.com/news-release/2018/02/21/1372706/0/en/Pascal-Biosciences-Identifies-Molecules-in-Cannabis-That-Stimulate-the-Immune-System-to-Destroy-Tumor-Cells.html

““We are very excited about this novel discovery,” commented Dr. Patrick Gray, CEO of Pascal Biosciences.” Cannabinoids typically have good pharmacological properties, as most have low toxicity and are easily absorbed into the blood, which are great advantages for drug development. In combination with immune checkpoint inhibitors, cannabinoids may significantly improve cancer care. ”We wish to highlight specifically the line “Pascal is the first to identify a mechanism in which cannabinoids may provide a direct benefit in immunotherapy”.” http://nasdaqnewsreports.blogspot.com/2018/02/pascal-biosciences-cannabis.html
“Pascal Biosciences Stock Soars on New Cannabinoids Discovery” https://smallcappower.com/news/market-news/pascal-biosciences-inc-stock/
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-invasion Effects of Cannabinoids Agonist and Antagonist on Human Breast Cancer Stem Cells.

$
0
0

Image result for Iran J Pharm Res.

“Studies show that cancer cell invasion or metastasis is the primary cause of death in malignancies including breast cancer.

The existence of cancer stem cells (CSCs) in breast cancer may account for tumor initiation, progression, and metastasis.

Recent studies have reported different effects of cannabinoids on cancer cells via CB1 and CB2 cannabinoid receptors.

In the present study, the effects of ACEA (a selective CB1 receptor agonist) and AM251 (a selective CB1 antagonist) on CSCs and their parental cells were investigated.

It was observed that ACEA decreased CD44+/CD24-/low/ESA+ cancer stem cell invasiveness.

Since one of the main cancer recurrence factors is anti-cancer drugs fail to inhibit CSC population, this observation would be useful for cancer treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/29552056

“Our results indicate that cannabinoids may interfere with invasive cancer stem cells in benefit of cancer eradication. In summary, our results clarified that cannabinoid receptor agonist possesses anti-invasion potential in both main population and breast cancer stem cells. Considering that most anti-cancer drugs do not eradicate stem cells and only target main population cells, the results disclosed here can be used for prevention of cancer recurrence.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843309/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice.

$
0
0

“The use of cannabis for medical purposes has been recently legalised in many countries including the Czech Republic. As a result, there is increased interest on the part of physicians and patients in many aspects of its application. This mini review briefly covers the main active substances of the cannabis plant and mechanisms of action. It focuses on two conditions, cancer pain and spasticity in multiple sclerosis, where its effects are well-documented. A comprehensive overview of a few cannabis-based products and the basic pharmacokinetics of marijuana’s constituents follows. The review concludes with an outline for preparing cannabis (dried inflorescence) containing drug dosage forms that can be produced in a hospital pharmacy.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous


Suppression of Cisplatin-Induced Vomiting by Cannabis sativa in Pigeons: Neurochemical Evidences.

$
0
0

Image result for frontiers in pharmacology

“Cannabis sativa (CS, family Cannabinaceae) has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigate CS for potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting.

High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT), dopamine (DA) and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac), Homovanillic acid (HVA), and 5-hydroxy indole acetic acid (5HIAA) centrally in specific brain areas (area postrema and brain stem) while, peripherally in small intestine. Cisplatin (7 mg/kg i.v.) induce emesis without lethality across the 24 h observation period.

CS hexane fraction (CS-HexFr; 10 mg/kg) attenuated cisplatin-induced emesis ∼ 65.85% (P < 0.05); the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg), produced ∼43.90% reduction (P < 0.05). At acute time point (3rd h), CS-HexFr decreased (P < 0.001) the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18th h (delayed time point) CS-HexFr attenuated (P < 0.001) the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema. CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly.

In conclusion the anti-emetic effect of CS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rd and 18th h in pigeons.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The use of cannabis in supportive care and treatment of brain tumor

$
0
0

Issue Cover

“Anticancer Effects of Cannabinoids may be able to Prolong Life.

Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also synthetic and has properties that are very similar to those of THC.

Cannabinoids have a role in the treatment of cancer as palliative interventions against nausea, vomiting, pain, anxiety, and sleep disturbances. THC and nabilone are also used for anorexia and weight loss, whereas CBD has no orexigenic effect. The psychotropic effects of THC and nabilone, although often undesirable, can improve mood when administered in low doses. CBD has no psychotropic effects; it is anxiolytic and antidepressive.

Of particular interest are glioma studies in animals where relatively high doses of CBD and THC demonstrated significant regression of tumor volumes (approximately 50% to 95% and even complete eradication in rare cases). Concomitant treatment with X-rays or temozolomide enhanced activity further. Similarly, a combination of THC with CBD showed synergistic effects. Although many questions, such as on optimized treatment schedules, are still unresolved, today’s scientific results suggest that cannabinoids could play an important role in palliative care of brain tumor patients.

THC, a partial CB1, CB2 agonist, has the stigma of psychotropic effects that are mediated by CB1 stimulation. However, CB1 stimulation is necessary for improving mood and appetite and many other effects. At present, it is hard to imagine a better approach than adjusting THC doses individually to balance wanted versus unwanted effects. Generally, higher doses are needed to achieve analgesic and antiemetic effects. Even much higher, supraphysiologic oral doses would be needed to combat tumors.

Combinations were synergistic under many circumstances such as in pain and antitumor studies. Cannabinoids differ in their antitumor activities and probably in their mechanisms and targets, which is a rationale for combinations. However, for many pharmacological effects (except against tumors) roughly 10-times higher daily doses are needed for CBD compared to THC.

In summary, the endocannabinoid system is likely playing a crucial role in palliative care. The future will show whether an optimized treatment strategy with cannabinoids can also prolong life of brain tumor patients by their virtue to combat cancer cells.”

https://academic.oup.com/nop/article/4/3/151/2918616

“Cannabinoid Drug Prolongs the Life of Brain Tumor Patients in Phase II Trials”  https://labiotech.eu/gw-pharmaceuticals-brain-tumor/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and Anti-Cancer Drugs: Societal Usage and Expected Pharmacological Interactions – A Review.

$
0
0

Fundamental &amp; Clinical Pharmacology banner

“Cannabis is a plant that has been used for centuries to relieve a wide range of symptoms. Since the 1960s, interest in medical research into this plant has grown steadily. Already very popular for recreational use, a growing number of consumers not accustomed to using cannabis for psychoactive purposes, have begun to use it as an alternative or complement to mainstream pharmaceutical medicines. The principal unsubstantiated or “social” uses of cannabis are based mainly on data that is at best controversial, but usually not scientifically proven. The aim of this review is to identify the scientific basis and reasons that lead patients with cancer to consume cannabis, and also to identify whether there is a risk of interaction between cannabis and anti-cancer medicines through drug transporters (P-glycoprotein and other ABC-superfamily members) Cytochromes P450 (3A, 1A, 2B, 2C 2D families…) and glucuronyl-transferases.”

https://www.ncbi.nlm.nih.gov/pubmed/29660159

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12373

“Cannabinoids as Anticancer Drugs.”  https://www.ncbi.nlm.nih.gov/pubmed/28826542

“Targeting the endocannabinoid system as a potential anticancer approach.”  https://www.ncbi.nlm.nih.gov/pubmed/29390896

“Anticancer mechanisms of cannabinoids”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/

http://www.thctotalhealthcare.com/tag/anticancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

INSIGHT ON THE IMPACT OF ENDOCANNABINOID SYSTEM IN CANCER: A REVIEW.

$
0
0

British Journal of Pharmacology banner

“In the last decades, the endocannabinoid system has attracted a great interest in medicine and cancer disease is probably one of its most promising therapeutic areas.

On the one hand, endocannabinoid system expression has been found altered in numerous types of tumours compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type.

On the other hand, it has been reported that cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells; and also tumour angiogenesis.

The endocannabinoid system may be considered as a new therapeutic target, although further studies to fully establish the effect of cannabinoids on tumour progression remain necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/29663308

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hemp shows potential for treating ovarian cancer

$
0
0

“Researchers demonstrate hemp’s ability to slow cancer growth and uncover mechanism for its cancer-fighting ability.

Results from some of the first studies to examine hemp’s ability to fight cancer show that it might one day be useful as plant-based treatment for ovarian cancer. Hemp is part of the same cannabis family as marijuana but doesn’t have any psychoactive properties or cause addiction.

“Hemp, like marijuana, contains therapeutically valuable components such as cannabidiol, cannabinol, and tetrahydrocannabinol,”

“Our findings from this research as well as prior research show that KY hemp slows ovarian cancer comparable to or even better than the current ovarian cancer drug Cisplatin,” said Turner. “Since Cisplatin exhibits high toxicity, we anticipate that hemp would carry less side effects.”

https://www.sciencedaily.com/releases/2018/04/180423155046.htm

“Hemp Shows Potential for Treating Ovarian Cancer”  https://www.eurekalert.org/multimedia/pub/167927.php

“Hemp Can Fight Cancer Too, Reveal Scientists in New Cannabis Study”  https://www.inverse.com/article/44039-cancer-hemp-plant-based-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Viewing all 779 articles
Browse latest View live